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The continuum hypotheses (CH) is one of the most central open problems
in set theory, one that is important for both mathematical and philosophical
reasons.

The problem actually arose with the birth of set theory; indeed, in many
respects it stimulated the birth of set theory. In 1874 Cantor had shown
that there is a one-to-one correspondence between the natural numbers and
the algebraic numbers. More surprisingly, he showed that there is no one-
to-one correspondence between the natural numbers and the real numbers.
Taking the existence of a one-to-one correspondence as a criterion for when
two sets have the same size (something he certainly did by 1878), this result
shows that there is more than one level of infinity and thus gave birth to
the higher infinite in mathematics. Cantor immediately tried to determine
whether there were any infinite sets of real numbers that were of intermediate
size, that is, whether there was an infinite set of real numbers that could
not be put into one-to-one correspondence with the natural numbers and
could not be put into one-to-one correspondence with the real numbers. The
continuum hypothesis (under one formulation) is simply the statement that
there is no such set of real numbers. It was through his attempt to prove this
hypothesis that led Cantor do develop set theory into a sophisticated branch
of mathematics.1

Despite his efforts Cantor could not resolve CH. The problem persisted
and was considered so important by Hilbert that he placed it first on his
famous list of open problems to be faced by the 20th century. Hilbert also
struggled to resolve CH, again without success. Ultimately, this lack of
progress was explained by the combined results of Gödel and Cohen, which

1See Hallett (1984) for further historical information on the role of CH in the early
foundations of set theory.
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together showed that CH cannot be resolved on the basis of the axioms that
mathematicians were employing; in modern terms, CH is independent of
ZFC.

This independence result was quickly followed by many others. The in-
dependence techniques were so powerful that set theorists soon found them-
selves preoccupied with the meta-theoretic enterprise of proving that certain
fundamental statements could not be proved or refuted within ZFC. The
question then arose as to whether there were ways to settle the independent
statements. The community of mathematicians and philosophers of math-
ematics was largely divided on this question. The pluralists (like Cohen)
maintained that the independence results effectively settled the question by
showing that it had no answer. On this view, one could adopt a system in
which, say CH was an axiom and one could adopt a system in which ¬CH
was an axiom and that was the end of the matter—there was no question
as to which of two incompatible extensions was the “correct” one. The non-
pluralists (like Gödel) held that the independence results merely indicated
the paucity of our means for circumscribing mathematical truth. On this
view, what was needed were new axioms, axioms that are both justified and
sufficient for the task. Gödel actually went further in proposing candidates
for new axioms—large cardinal axioms—and he conjectured that they would
settle CH.

Gödel’s program for large cardinal axioms proved to be remarkably suc-
cessful. Over the course of the next 30 years it was shown that large cardinal
axioms settle many of the questions that were shown to be independent dur-
ing the era of independence. However, CH was left untouched. The situation
turned out to be rather ironic since in the end it was shown (in a sense
that can be made precise) that although the standard large cardinal axioms
effectively settle all question of complexity strictly below that of CH, they
cannot (by results of Levy and Solovay and others) settle CH itself. Thus,
in choosing CH as a test case for his program, Gödel put his finger precisely
on the point where it fails. It is for this reason that CH continues to play a
central role in the search for new axioms.

In this entry we shall give an overview of the major approaches to settling
CH and we shall discuss some of the major foundational frameworks which
maintain that CH does not have an answer. The subject is a large one and
we have had to sacrifice full comprehensiveness in two dimensions. First, we
have not been able to discuss the major philosophical issues that are lying in
the background. For this the reader is directed to the entry “Large Cardinals
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and Determinacy”, which contains a general discussion of the independence
results, the nature of axioms, the nature of justification, and the successes of
large cardinal axioms in the realm “below CH”. Second, we have not been
able to discuss every approach to CH that is in the literature. Instead we have
restricted ourselves to those approaches that appear most promising from a
philosophical point of view and where the mathematics has been developed
to a sufficiently advanced state. In the approaches we shall discuss—forcing
axioms, inner model theory, quasi-large cardinals—the mathematics has been
pressed to a very advanced stage over the course of 40 years. And this has
made our task somewhat difficult. We have tried to keep the discussion as
accessible as possible and we have placed the more technical items in the
endnotes. But the reader should bear in mind that we are presenting a bird’s
eye view and that for a higher resolution at any point the reader should dip
into the suggested readings that appear at the end of each section.2

There are really two kinds of approaches to new axioms—the local ap-
proach and the global approach. On the local approach one seeks axioms
that answer questions concerning a specifiable fragment of the universe, such
as Vω+1 or Vω+2, where CH lies. On the global approach one seeks axioms
that attempt to illuminate the entire structure of the universe of sets. The
global approach is clearly much more challenging. In this entry we shall start
with the local approach and toward the end we shall briefly touch upon the
global approach.

Here is an overview of the entry: Section 1 surveys the independence
results in cardinal arithmetic, covering both the case of regular cardinals
(where CH lies) and singular cardinals. Section 2 considers approaches to
CH where one successively verifies a hierarchy of approximations to CH, each
of which is an “effective” version of CH. This approach led to the remarkable
discovery of Woodin that it is possible (in the presence of large cardinals)
to have an effective failure of CH, thereby showing, that the effective failure
of CH is as intractable (with respect to large cardinal axioms) as CH itself.
Section 3 continues with the developments that stemmed from this discovery.
The centerpiece of the discussion is the discovery of a “canonical” model in
which CH fails. This formed the basis of a network of results that was
collectively presented by Woodin as a case for the failure of CH. To present

2We have of necessity presupposed much in the way of set theory. The reader seeking
additional detail—for example, the definitions of regular and singular cardinals and other
fundamental notions—is directed to one of the many excellent texts in set theory, for
example Jech (2003).
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this case in the most streamlined form we introduce the strong logic Ω-logic.
Section 4 takes up the competing foundational view that there is no solution
to CH. This view is sharpened in terms of the generic multiverse conception
of truth and that view is then scrutinized. Section 5 continues the assessment
of the case for ¬CH by investigating a parallel case for CH. In the remaining
two sections we turn to the global approach to new axioms and here we
shall be much briefer. Section 6 discusses the approach through inner model
theory. Section 7 discusses the approach through quasi-large cardinal axioms.

1 Independence in Cardinal Arithmetic

In this section we shall discuss the independence results in cardinal arith-
metic. First, we shall treat of the case of regular cardinals, where CH lies
and where very little is determined in the context of ZFC. Second, for the
sake of comprehensiveness, we shall discuss the case of singular cardinals,
where much more can be established in the context of ZFC.

1.1 Regular Cardinals

The addition and multiplication of infinite cardinal numbers is trivial: For
infinite cardinals κ and λ,

κ+ λ = κ · λ = max{κ, λ}.

The situation becomes interesting when one turns to exponentiation and the
attempt to compute κλ for infinite cardinals.

During the dawn of set theory Cantor showed that for every cardinal κ,

2κ > κ.

There is no mystery about the size of 2n for finite n. The first natural question
then is where 2ℵ0 is located in the aleph-hierarchy: Is it ℵ1,ℵ2, . . . ,ℵ17 or
something much larger?

The cardinal 2ℵ0 is important since it is the size of the continuum (the
set of real numbers). Cantor’s famous continuum hypothesis (CH) is the
statement that 2ℵ0 = ℵ1. This is a special case of the generalized continuum
hypothesis (GCH) which asserts that for all α > ω, 2ℵα = ℵα+1. One virtue of
GCH is that it gives a complete solution to the problem of computing κλ for
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infinite cardinals: Assuming GCH, if κ 6 λ then κλ = λ+; if cf(κ) 6 λ 6 κ

then κλ = κ+; and if λ < cf(κ) then κλ = κ.
Very little progress was made on CH and GCH. In fact, in the early era

of set theory the only other piece of progress beyond Cantor’s result that
2κ > κ (and the trivial result that if κ 6 λ then 2κ 6 2λ) was König’s result
that cf(2κ) > κ. The explanation for the lack of progress was provided by
the independence results in set theory:

Theorem 1.1 (Gödel, 1938). Assume that ZFC is consistent. Then ZFC+
CH and ZFC + GCH are consistent.

To prove this Gödel invented the method of inner models—he showed that
CH and GCH held in the minimal inner model L of ZFC. Cohen then
complemented this result:

Theorem 1.2 (Cohen, 1963). Assume that ZFC is consistent. Then ZFC+
¬CH and ZFC + ¬GCH are consistent.

He did this by inventing the method of outer models and showing that CH
failed in a generic extension V B of V . The combined results of Gödel and Co-
hen thus demonstrate that assuming the consistency of ZFC, it is in principle
impossible to settle either CH or GCH in ZFC.

In the Fall of 1963 Easton completed the picture by showing that for
infinite regular cardinals κ the only constraints on the function κ 7→ 2κ that
are provable in ZFC are the trivial constraint and the results of Cantor and
König:

Theorem 1.3 (Easton, 1963). Assume that ZFC is consistent. Suppose F

is a (definable class) function defined on infinite regular cardinals such that

(1) if κ 6 λ then F (κ) 6 F (λ),

(2) F (κ) > κ, and

(3) cf(F (κ)) > κ.

Then ZFC + “For all infinite regular cardinals κ, 2κ = F (κ)” is consistent.

Thus, set theorists had pushed the cardinal arithmetic of regular cardinals
as far as it could be pushed within the confines of ZFC.
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1.2 Singular Cardinals

The case of cardinal arithmetic on singular cardinals is much more subtle.
For the sake of completeness we pause to briefly discuss this before proceeding
with the continuum hypothesis.

It was generally believed that, as in the case for regular cardinals, the
behaviour of the function κ 7→ 2κ would be relatively unconstrained within
the setting of ZFC. But then Silver proved the following remarkable result:3

Theorem 1.4 (Silver, 1974). If ℵδ is a singular cardinal of uncountable
cofinality, then, if GCH holds below ℵδ, then GCH holds at ℵδ.

It turns out that (by a deep result of Magidor, published in 1977) GCH
can first fail at ℵω (assuming the consistency of a supercompact cardinal).
Silver’s theorem shows that it cannot first fail at ℵω1 and this is provable in
ZFC.

This raises the question of whether one can “control” the size of 2ℵδ

with a weaker assumption than that ℵδ is a singular cardinal of uncountable
cofinality such that GCH holds below ℵδ. The natural hypothesis to consider
is that ℵδ is a singular cardinal of uncountable cofinality which is a strong
limit cardinal, that is, that for all α < ℵδ, 2

α < ℵδ. In 1975 Galvin and
Hajnal proved (among other things) that under this weaker assumption there
is indeed a bound:

Theorem 1.5 (Galvin and Hajnal, 1975). If ℵδ is a singular strong limit
cardinal of uncountable cofinality then

2ℵδ < ℵ(|δ|cf(δ))+ .

It is possible that there is a jump—in fact, Woodin showed (again assuming
large cardinals) that it is possible that for all κ, 2κ = κ++. What the above
theorem shows is that in ZFC there is a provable bound on how big the jump
can be.

The next question is whether a similar situation prevails with singular
cardinals of countable cofinality. In 1978 Shelah showed that this is indeed
the case. To fix ideas let us concentrate on ℵω.

3To say that GCH holds below δ is just to say that 2ℵα = ℵα+1 for all ω 6 α < δ and
to say that GCH holds at δ is just to say that 2ℵδ = ℵδ+1).
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Theorem 1.6 (Shelah, 1978). If ℵω is a strong limit cardinal then

2ℵω < ℵ(2ℵ0 )+ .

One drawback of this result is that the bound is sensitive to the actual size
of 2ℵ0 , which can be anything below ℵω. Remarkably Shelah was later able
to remedy this with the development of his pcf (possible cofinalities) theory.
One very quotable result from this theory is the following:

Theorem 1.7 (Shelah). If ℵω is a strong limit cardinal then (regardless of
the size of 2ℵ0)

2ℵω < ℵω4 .

In summary, although the continuum function at regular cardinals is rel-
atively unconstrained in ZFC, the continuum function at singular cardinals
is (provably in ZFC) constrained in significant ways by the behaviour of the
continuum function on the smaller cardinals.

Further Reading : For more cardinal arithmetic see Jech (2003). For more on
the case of singular cardinals and pcf theory see Abraham & Magidor (2010)
and Holz, Steffens & Weitz (1999).

2 Definable Versions of the Continuum Hy-

pothesis and its Negation

Let us return to the continuum function on regular cardinals and concentrate
on the simplest case, the size of 2ℵ0 . One of Cantor’s original approaches to
CH was by investigating “simple” sets of real numbers.4 One of the first
results in this direction is the Cantor-Bendixson theorem that every infinite
closed set is either countable or contains a perfect subset, in which case it
has the same cardinality as the set of reals. In other words, CH holds (in
this formulation) when one restricts one’s attention to closed sets of reals.
In general, questions about “definable” sets of reals are more tractable than
questions about arbitrary sets of reals and this suggests looking at definable
versions of the continuum hypothesis.

4See Hallett (1984), pp. 3-5 and §2.3(b).
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2.1 Three Versions

There are three different formulations of the continuum hypothesis—the
interpolant version, the well-ordering version, and the surjection version.
These versions are all equivalent to one another in ZFC but we shall be
imposing a definability constraint and in this case there can be interesting
differences.5 There is really a hierarchy of notions of definability—ranging
up through the Borel hierarchy, the projective hierarchy, the hierarchy in
L(R), and, more generally, the hierarchy of universally Baire sets—and so
each of these three general versions is really a hierarchy of versions, each
corresponding to a given level of the hierarchy of definability.6

2.1.1 Interpolant Version

The first formulation of CH is that there is no interpolant, that is, there is no
infinite set A of real numbers such that the cardinality of A is strictly between
that of the natural numbers and the real numbers. To obtain definable
versions one simply asserts that there is no “definable” interpolant and this
leads to a hierarchy of definable interpolant versions, depending on which
notion of definability one employs. More precisely, for a given pointclass
Γ in the hierarchy of definable sets of reals, the corresponding definable
interpolant version of CH asserts that there is no interpolant in Γ.

The Cantor-Bendixson theorem shows that there is no interpolant in Γ in
the case where Γ is the pointclass of closed sets, thus verifying this version of
CH. This was improved by Suslin who showed that this version of CH holds
for Γ where Γ is the class of Σ

∼
1
1 sets. One cannot go much further within

ZFC—to prove stronger versions one must bring in stronger assumptions. It
turns out that axioms of definable determinacy and large cardinal axioms
achieve this. For example, results of Kechris and Martin show that if ∆∼

1
n-

determinacy holds then this version of CH holds for the pointclass of Σ∼
1
n+1

sets. Going further, if one assumes ADL(R) then this version of CH holds for
all sets of real numbers appearing in L(R). Since these hypotheses follow
from large cardinal axioms one also has that stronger and stronger large
cardinal assumptions secure stronger and stronger versions of this version of
the effective continuum hypothesis. Indeed large cardinal axioms imply that

5Our discussion follows Martin (1976).
6For a discussion of the hierarchy of definability see §2.2.1 and §4.6 of the entry “Large

Cardinals and Determinacy”.
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this version of CH holds for all sets of reals in the definability hierarchy we
are considering; more precisely, if there is a proper class of Woodin cardinals
then this version of CH holds for all universally Baire sets of reals.

2.1.2 Well-ordering Version

The second formulation of CH asserts that every well-ordering of the reals
has order type less than ℵ2. For a given pointclass Γ in the hierarchy, the
corresponding definable well-ordering version of CH asserts that every well-
ordering (coded by a set) in Γ has order type less than ℵ2.

Again, axioms of definable determinacy and large cardinal axioms imply
this version of CH for richer notions of definability. For example, if ADL(R)

holds then this version of CH holds for all sets of real numbers in L(R). And
if there is a proper class of Woodin cardinals then this version of CH holds
for all universally Baire sets of reals.

2.1.3 Surjection Version

The third version formulation of CH asserts that there is no surjection ρ :
R → ℵ2, or, equivalently, that there is no prewellordering of R of length ℵ2.
For a given pointclass Γ in the hierarchy of definability, the corresponding
surjection version of CH asserts that there is no surjection ρ : R → ℵ2 such
that (the code for) ρ is in Γ.

Here the situation is more interesting. Axioms of definable determi-
nacy and large cardinal axioms have bearing on this version since they place
bounds on how long definable prewellorderings can be. Let δ

∼

1
n be the supre-

mum of the lengths of the Σ∼
1
n-prewellorderings of reals and let ΘL(R) be the

supremum of the lengths of prewellorderings of reals where the prewellorder-
ing is definable in the sense of being in L(R). It is a classical result that
δ
∼

1
1 = ℵ1. Martin showed that δ

∼

1
2 6 ℵ2 and that if there is a measurable car-

dinal then δ
∼

1
3 6 ℵ3. Kunen and Martin also showed under PD, δ

∼

1
4 6 ℵ4 and

Jackson showed that under PD, for each n < ω, δ
∼

1
n < ℵω. Thus, assuming

that there are infinitely many Woodin cardinals, these bounds hold. More-
over, the bounds continue to hold regardless of the size of 2ℵ0 . Of course,
the question is whether these bounds can be improved to show that the
prewellorderings are shorter than ℵ2. In 1986 Foreman and Magidor initi-
ated a program to establish this. In the most general form they aimed to
show that large cardinal axioms implied that this version of CH held for all
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universally Baire sets of reals.

2.1.4 Potential Bearing on CH

Notice that in the context of ZFC, these three hierarchies of versions of CH
are all successive approximations of CH and in the limit case, where Γ is the
pointclass of all sets of reals, they are equivalent to CH. The question is
whether these approximations can provide any insight into CH itself.

There is an asymmetry that was pointed out by Martin, namely, that a
definable counterexample to CH is a real counterexample, while no matter
how far one proceeds in verifying definable versions of CH at no stage will
one have touched CH itself. In other words, the definability approach could
refute CH but it could not prove it.

Still, one might argue that although the definability approach could not
prove CH it might provide some evidence for it. In the case of the first two
versions we now know that CH holds for all definable sets. Does this provide
evidence of CH? Martin pointed out (before the full results were known)
that this is highly doubtful since in each case one is dealing with sets that
are atypical. For example, in the first version, at each stage one secures
the definable version of CH by showing that all sets in the definability class
have the perfect set property; yet such sets are atypical in that assuming AC
it is easy to show that there are sets without this property. In the second
version, at each stage one actually shows not only that each well-ordering of
reals in the definability class has ordertype less than ℵ2, but also that it has
ordertype less than ℵ1. So neither of these versions really illuminates CH.

The third version actually has an advantage in this regard since not all of
the sets it deals with are atypical. For example, while all Σ∼

1
1-sets have length

less than ℵ1, there are Π∼
1
1-sets of length ℵ1. Of course, it could turn out that

even if the Foreman-Magidor program were to succeed the sets could turn
out to be atypical in another sense, in which case it would shed little light
on CH. More interesting, however, is the possibility that in contrast to the
first two versions, it would actually provide an actual counterexample to CH.
This, of course, would require the failure of the Foreman-Magidor program.

2.2 The Foreman-Magidor Program

The goal of the Foreman-Magidor program was to show that large cardinal
axioms also implied that the third version of CH held for all sets in L(R) and,
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more generally, all universally Baire sets. In other words, the goal was to
show that large cardinal axioms implied that ΘL(R) 6 ℵ2 and, more generally,
that ΘL(A,R) 6 ℵ2 for each universally Baire set A.

The motivation came from the celebrated results of Foreman, Magidor
and Shelah on Martin’s Maximum (MM), which showed that assuming large
cardinal axioms one can always force to obtain a precipitous ideal on ℵ2

without collapsing ℵ2.
7 The program involved a two-part strategy:

(A) Strengthen this result to show that assuming large cardinal axioms one
can always force to obtain a saturated ideal on ℵ2 without collapsing
ℵ2.

(B) Show that the existence of such a saturated ideal implies that ΘL(R) 6

ℵ2 and, more generally that ΘL(A,R) 6 ℵ2 for every universally Baire
set A.

This would show that show that ΘL(R) 6 ℵ2 and, more generally that
ΘL(A,R) 6 ℵ2 for every universally Baire set A.8

In December 1991, the following result dashed the hopes of this program.

Theorem 2.1 (Woodin). Assume that the non-stationary ideal on ℵ1 is
saturated and that there is a measurable cardinal. Then δ

∼

1
2 = ℵ2.

The point is that the hypothesis of this theorem can always be forced as-
suming large cardinals. Thus, it is possible to have ΘL(R) > ℵ2 (in fact,
δ
∼

1
3 > ℵ2).
Where did the program go wrong? Foreman and Magidor had an approx-

imation to (B) and in the end it turned out that (B) is true.

Theorem 2.2 (Woodin). Assume that there is a proper class of Woodin
cardinals and that there is a saturated ideal on ℵ2. Then for every A ∈ Γ∞,
ΘL(A,R) 6 ℵ2.

7See Foreman, Magidor & Shelah (1988).
8To see this argue as follows: Assume large cardinal axioms at the level involved in

(A) and (B) and assume that there is a proper class of Woodin cardinals. Suppose for
contradiction that there is a prewellordering in L(R) of length ℵ2. Now, using (A) force
to obtain a saturated ideal on ℵ2 without collapsing ℵ2. In this forcing extension, the
original prewellordering is still a prewellordering in L(R) of length ℵ2, which contradicts
(B). Thus, the original large cardinal axioms imply that ΘL(R) 6 ℵ2. The same argument
applies in the more general case where the prewellordering is universally Baire.
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So the trouble is with (A).
This illustrates an interesting contrast between our three versions of the

effective continuum hypothesis, namely, that they can come apart. For while
large cardinals rule out definable counterexamples of the first two kinds, they
cannot rule out definable counterexamples of the third kind. But again we
must stress that they cannot prove that there are such counterexamples.

But there is an important point: Assuming large cardinal axioms (ADL(R)

suffices), although one can produce outer models in which δ
∼

1
3 > ℵ2 it is not

currently known how to produce outer models in which δ
∼

1
3 > ℵ3 or even

ΘL(R) > ℵ3. Thus it is an open possibility that from ZFC + ADL(R) one can
prove ΘL(R) 6 ℵ3. Were this to be the case, it would follow that although
large cardinals cannot rule out the definable failure of CH they can rule out
the definable failure of 2ℵ0 = ℵ2. This could provide some insight into the
size of the continuum, underscoring the centrality of ℵ2.

Further Reading : For more on the three effective versions of CH see Martin
(1976); for more on the Foreman-Magidor program see Foreman & Magidor
(1995) and the introduction to Woodin (1999).

3 The Case for ¬CH

The above results led Woodin to the identification of a “canonical” model
in which CH fails and this formed the basis of his an argument that CH is
false. In Section 3.1 we will describe the model and in the remainder of the
section we will present the case for the failure of CH. In Section 3.2 we will
introduce Ω-logic and the other notions needed to make the case. In Section
3.3 we will present the case.

3.1 Pmax

The goal is to find a model in which CH is false and which is canonical in the
sense that its theory cannot be altered by set forcing in the presence of large
cardinals. The background motivation is this: First, we know that in the
presence of large cardinal axioms the theory of second-order arithmetic and
even the entire theory of L(R) is invariant under set forcing. The importance
of this is that it demonstrates that our main independence techniques can-
not be used to establish the independence of questions about second-order
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arithmetic (or about L(R)) in the presence of large cardinals. Second, experi-
ence has shown that the large cardinal axioms in question seem to answer all
of the major known open problems about second-order arithmetic and L(R)
and the set forcing invariance theorems give precise content to the claim that
these axioms are “effectively complete”.9

It follows that if P is any homogeneous partial order in L(R) then the
generic extension L(R)P inherits the generic absoluteness of L(R). Woodin
discovered that there is a very special partial order Pmax that has this feature.
Moreover, the model L(R)Pmax satisfies ZFC+ ¬CH. The key feature of this
model is that it is “maximal” (or “saturated”) with respect to sentences that
are of a certain complexity and which can be shown to be consistent via set
forcing over the model; in other words, if these sentences can hold (by set
forcing over the model) then they do hold in the model. To state this more
precisely we are going to have to introduce a few rather technical notions.

There are two ways of stratifying the universe of sets. The first is in
terms of 〈Vα | α ∈ On〉, the second is in terms of 〈H(κ) | κ ∈ Card〉, where
H(κ) is the set of all sets which have cardinality less than κ and whose
members have cardinality less than κ, and whose members of members have
cardinality less than κ, and so on. For example, H(ω) = Vω and the theories
of the structures H(ω1) and Vω+1 are mutually interpretable. This latter
structure is the structure of second-order arithmetic and, as mentioned above,
large cardinal axioms give us an “effectively complete” understanding of this
structure. We should like to be in the same position with regard to larger
and larger fragments of the universe and the question is whether we should
proceed in terms of the first or the second stratification.

The second stratification is potentially more fine-grained. Assuming CH
one has that the theories of H(ω2) and Vω+2 are mutually interpretable and
assuming larger and larger fragments of GCH this correspondence continues
upward. But if CH is false then the structure H(ω2) is less rich than the
structure Vω2 . In this event the latter structure captures full third-order
arithmetic, while the former captures only a small fragment of third-order
arithmetic but is nevertheless rich enough to express CH. Given this, in
attempting to understand the universe of sets by working up through it level
by level, it is sensible to use the potentially more fine-grained stratification.

9For more on the topic of invariance under set forcing and the extent to which this has
been established in the presence of large cardinal axioms, see §4.4 and §4.6 of the entry
“Large Cardinals and Determinacy”.
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Our next step is therefore to understand H(ω2). It actually turns out that
we will be able to understand slightly more and this is somewhat technical.
We will be concerned with the structure 〈H(ω2),∈, INS, A

G〉 |= ϕ, where
INS is the non-stationary ideal on ω1 and AG is the interpretation of (the
canonical representation of) a set of reals A in L(R). The details will not be
important and the reader is asked to just think of H(ω2) along with some
“extra stuff” and not worry about the details concerning the extra stuff.10

We are now in a position to state the main result:

Theorem 3.1 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that A ∈ P(R) ∩ L(R) and ϕ is a Π2-sentence
(in the extended language with two additional predicates) and there is a set
forcing extension V [G] such that

〈H(ω2),∈, INS, A
G〉 |= ϕ

(where AG is the interpretation of A in V [G]). Then

L(R)Pmax |= “〈H(ω2),∈, INS, A〉 |= ϕ”.

There are two key points: First, the theory of L(R)Pmax is “effectively com-
plete” in the sense that it is invariant under set forcing. Second, the model
L(R)Pmax is “maximal” (or “saturated”) in the sense that it satisfies all Π2-
sentences (about the relevant structure) that can possibly hold (in the sense
that they can be shown to be consistent by set forcing over the model).

One would like to get a handle on the theory of this structure by axiom-
atizing it. The relevant axiom is the following:

Definition 3.2 (Woodin). Axiom (∗): ADL(R) holds and L(P (ω1)) is a Pmax-
generic extension of L(R).

Finally, this axiom settles CH:

Theorem 3.3 (Woodin). Assume (∗). Then 2ω = ℵ2.

10The non-stationary ideal INS is a proper class from the point of view of H(ω2) and it
manifests (through Solovay’s theorem on splitting stationary sets) a non-trivial application
of AC. For further details concerning AG see §4.6 of the entry “Large Cardinals and
Determinacy”.
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3.2 Ω-Logic

We will now recast the above results in terms of a strong logic. We shall
make full use of large cardinal axioms and in this setting we are interested in
logics that are “well-behaved” in the sense that the question of what implies
what is not radically independent. For example, it is well known that CH is
expressible in full second-order logic. It follows that in the presence of large
cardinals one can always use set forcing to flip the truth-value of a purported
logical validity of full second-order logic. However, there are strong logics—
like ω-logic and β-logic—that do not have this feature—they are well-behaved
in the sense that in the presence of large cardinal axioms the question of
what implies what cannot be altered by set forcing. We shall introduce a
very strong logic that has this feature—Ω-logic. In fact, the logic we shall
introduce can be characterized as the strongest logic with this feature.11

3.2.1 Ω-logic

Definition 3.4. Suppose that T is a countable theory in the language of set
theory and ϕ is a sentence. Then

T |=Ω ϕ

if for all complete Boolean algebras B and for all ordinals α,

if V B

α |= T then V B

α |= ϕ.

We say that a statement ϕ is Ω-satisfiable if there exists an ordinal α
and a complete Boolean algebra B such that V B

α |= ϕ, and we say that ϕ is
Ω-valid if ∅ |=Ω ϕ. So, the above theorem says that (under our background
assumptions), the statement “ϕ is Ω-satisfiable” is generically invariant and
in terms of Ω-validity this is simply the following:

Theorem 3.5 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that T is a countable theory in the language of
set theory and ϕ is a sentence. Then for all complete Boolean algebras B,

T |=Ω ϕ iff V B |= “T |=Ω ϕ.”

Thus this logic is robust in that the question of what implies what is invariant
under set forcing.

11See Koellner (2010) for further discussion of strong logics and for a precise statement
of this result.
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3.2.2 The Ω Conjecture

Corresponding to the semantic relation |=Ω there is a quasi-syntactic proof
relation ⊢Ω. The “proofs” are certain robust sets of reals (universally Baire
sets of reals) and the test structures are models that are “closed” under these
proofs. The precise notions of “closure” and “proof” are somewhat technical
and so we will pass over them in silence.12

Like the semantic relation, this quasi-syntactic proof relation is robust
under large cardinal assumptions:

Theorem 3.6 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose T is a countable theory in the language of set
theory, ϕ is a sentence, and B is a complete Boolean algebra. Then

T ⊢Ω ϕ iff V B |= “T ⊢Ω ϕ”.

Thus, we have a semantic consequence relation and a quasi-syntactic proof
relation, both of which are robust under the assumption of large cardinal ax-
ioms. It is natural to ask whether the soundness and completeness theorems
hold for these relations. The soundness theorem is known to hold:

Theorem 3.7 (Woodin). Assume ZFC. Suppose T is a countable theory in
the language of set theory and ϕ is a sentence. If T ⊢Ω ϕ then T |=Ω ϕ.

It is open whether the corresponding completeness theorem holds. The Ω
Conjecture is simply the assertion that it does:

Conjecture 3.8 (Ω Conjecture). Assume ZFC and that there is a proper
class of Woodin cardinals. Then for each sentence ϕ,

∅ |=Ω ϕ iff ∅ ⊢Ω ϕ.

12Here are the details: Let A ∈ Γ∞ and M be a countable transitive model of ZFC. We
say that M is A-closed if for all set generic extensions M [G] of M , A∩M [G] ∈ M [G]. Let
T be a set of sentences and ϕ be a sentence. We say that T ⊢Ω ϕ if there is a set A ⊆ R

such that

(1) L(A,R) |= AD+,

(2) P(R) ∩ L(A,R) ⊆ Γ∞, and

(3) for all countable transitive A-closed M ,

M |= “T |=Ω ϕ”,

where here AD+ is a strengthening of AD.
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We will need a strong form of this conjecture which we shall call the
Strong Ω Conjecture. It is somewhat technical and so we will pass over it in
silence.13

3.2.3 Ω-Complete Theories

Recall that one key virtue of large cardinal axioms is that they “effectively
settle” the theory of second-order arithmetic (and, in fact, the theory of
L(R) and more) in the sense that in the presence of large cardinals one
cannot use the method of set forcing to establish independence with respect
to statements about L(R). This notion of invariance under set forcing played
a key role in Section 3.1. We can now rephrase this notion in terms of Ω-logic.

Definition 3.9. A theory T is Ω-complete for a collection of sentences Γ if
for each ϕ ∈ Γ, T |=Ω ϕ or T |=Ω ¬ϕ.

The invariance of the theory of L(R) under set forcing can now be rephrased
as follows:

Theorem 3.10 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Then ZFC is Ω-complete for the collection of sentences of
the form “L(R) |= ϕ”.

Unfortunately, it follows from a series of results originating with work
of Levy and Solovay that traditional large cardinal axioms do not yield Ω-
complete theories at the level of Σ2

1 since one can always use a “small” (and
hence large cardinal preserving) forcing to alter the truth-value of CH.

Theorem 3.11. Assume L is a standard large cardinal axiom. Then ZFC+L

is not Ω-complete for Σ2
1.

13Here are the details: First we need another conjecture: (The AD+ Conjecture) Sup-
pose that A and B are sets of reals such that L(A,R) and L(B,R) satisfy AD+. Suppose
every set

X ∈ P(R) ∩
(

L(A,R) ∪ L(B,R)
)

is ω1-universally Baire. Then either

(∆
∼

2
1)

L(A,R) ⊆ (∆
∼

2
1)

L(B,R)

or
(∆
∼

2
1)

L(B,R) ⊆ (∆
∼

2
1)

L(A,R).

(Strong Ω conjecture) Assume there is a proper class of Woodin cardinals. Then the Ω
Conjecture holds and the AD+ Conjecture is Ω-valid.
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3.3 The Case

Nevertheless, if one supplements large cardinal axioms then Ω-complete the-
ories are forthcoming. This is the centerpiece of the case against CH.

Theorem 3.12 (Woodin). Assume that there is a proper class of Woodin
cardinals and that the Strong Ω Conjecture holds.

(1) There is an axiom A such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the structure H(ω2).

(2) Any such axiom A has the feature that

ZFC + A |=Ω “H(ω2) |= ¬CH”.

Let us rephrase this as follows: For each A satisfying (1), let

TA = {ϕ | ZFC + A |=Ω “H(ω2) |= ¬ϕ ”}.

The theorem says that if there is a proper class of Woodin cardinals and the
Ω Conjecture holds, then there are (non-trivial) Ω-complete theories TA of
H(ω2) and all such theories contain ¬CH.

It is natural to ask whether there is greater agreement among the Ω-
complete theories TA. Ideally, there would be just one. A recent result
(building on Theorem 5.5) shows that if there is one such theory then there
are many such theories.

Theorem 3.13 (Koellner and Woodin). Assume that there is a proper class
of Woodin cardinals. Suppose that A is an axiom such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the structure H(ω2).

Then there is an axiom B such that

(i′) ZFC +B is Ω-satisfiable and

(ii′) ZFC +B is Ω-complete for the structure H(ω2)
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and TA 6= TB.

How then shall one select from among these theories? Woodin’s work in
this area goes a good deal beyond Theorem 5.1. In addition to isolating an
axiom that satisfies (1) of Theorem 5.1 (assuming Ω-satisfiability), he isolates
a very special such axiom, namely, the axiom (∗) (“star”) mentioned earlier.

This axiom can be phrased in terms of (the provability notion of) Ω-logic:

Theorem 3.14 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Then the following are equivalent :

(1) (∗).

(2) For each Π2-sentence ϕ in the language for the structure

〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉

if
ZFC + “〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉 |= ϕ”

is Ω-consistent, then

〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉 |= ϕ.

It follows that of the various theories TA involved in Theorem 5.1, there
is one that stands out: The theory T(∗) given by (∗). This theory maximizes
the Π2-theory of the structure 〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉.

The continuum hypothesis fails in this theory. Moreover, in the maximal
theory T(∗) given by (∗) the size of the continuum is ℵ2.

14

To summarize: Assuming the Strong Ω Conjecture, there is a “good”
theory of H(ω2) and all such theories imply that CH fails. Moreover, (again,
assuming the Strong Ω Conjecture) there is a maximal such theory and in
that theory 2ℵ0 = ℵ2.

Further Reading : For the mathematics concerning Pmax see Woodin (1999).
For an introduction to Ω-logic see Bagaria, Castells & Larson (2006). For
more on incompatible Ω-complete theories see Koellner & Woodin (2009).
For more on the case against CH see Woodin (2001a), Woodin (2001b),
Woodin (2005a), and Woodin (2005b).

14As mentioned at the end of Section 2.2 it could be the case (given our present knowl-
edge) that large cardinal axioms imply that ΘL(R) < ℵ3 and, more generally, rule out the
definable failure of 2ℵ0 = ℵ2. This would arguably further buttress the case for 2ℵ0 = ℵ2.
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4 The Multiverse

The above case for the failure of CH is the strongest known local case for
axioms that settle CH. In this section and the next we will switch sides
and consider the pluralist arguments to the effect that CH does not have
an answer (in this section) and to the effect that there is an equally good
case for CH (in the next section). In the final two section we will investigate
optimistic global scenarios that provide hope of settling the issue.

The pluralist maintains that the independence results effectively settle
the undecided questions by showing that they have no answer. One way
of providing a foundational framework for such a view is in terms of the
multiverse. On this view there is not a single universe of set theory but
rather a multiverse of legitimate candidates, some of which may be preferable
to others for certain purposes but none of which can be said to be the “true”
universe. The multiverse conception of truth is the view that a statement of
set theory can only be said to be true simpliciter if it is true in all universes
of the multiverse. For the purposes of this discussion we shall say that a
statement is indeterminate according to the multiverse conception if it is
neither true nor false according to the multiverse conception. How radical
such a view is depends on the breadth of the conception of the multiverse.

4.1 Broad Multiverse Views

The pluralist is generally a non-pluralist about certain domains of mathe-
matics. For example, a strict finitist might be a non-pluralist about PA but
a pluralist about set theory and one might be a non-pluralist about ZFC and
a pluralist about large cardinal axioms and statements like CH.

There is a form of radical pluralism which advocates pluralism concern-
ing all domains of mathematics. On this view any consistent theory is a
legitimate candidate and the corresponding models of such theories are le-
gitimate candidates for the the domain of mathematics. Let us call this the
broadest multiverse view. There is a difficulty in articulating this view, which
may be brought out as follows: To begin with, one must pick a background
theory in which to discuss the various models and this leads to a difficult.
For example, according to the broad multiverse conception, since PA cannot
prove Con(PA) (by the second incompleteness theorem, assuming that PA
is consistent) there are models of PA + ¬Con(PA) and these models are le-
gitimate candidates, that is, they are universes within the broad multiverse.
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Now to arrive at this conclusion one must (in the background theory) be
in a position to prove Con(PA) (since this assumption is required to apply
the second incompleteness theorem in this particular case). Thus, from the
perspective of the background theory used to argue that the above models
are legitimate candidates, the models in question satisfy a false Σ0

1-sentence,
namely, ¬Con(PA). In short, there is a lack of harmony between what is
held at the meta-level and what is held at the object-level.

The only way out of this difficulty would seem to be to regard each
viewpoint—each articulation of the multiverse conception—as provisional
and, when pressed, embrace pluralism concerning the background theory.
In other words, one would have to adopt a multiverse conception of the
multiverse, a multiverse conception of the multiverse conception of the mul-
tiverse, and so on, off to infinity. It follows that such a position can never be
fully articulated—each time one attempts to articulate the broad multiverse
conception one must employ a background theory but since one is a pluralist
about that background theory this pass at using the broad multiverse to ar-
ticulate the conception does not do the conception full justice. The position
is thus difficult to articulate. One can certainly take the pluralist stance and
try to gesture toward or exhibit the view that one intends by provisionally
settling on a particular background theory but then advocate pluralism re-
garding that when pressed. The view is thus something of a “moving target”.
We shall pass over this view in silence and concentrate on views that can be
articulated within a foundational framework.

We will accordingly look at views which embrace non-pluralism with re-
gard to a given stretch of mathematics and for reasons of space and because
this is an entry on set theory we will pass over the long debates concerning
strict finitism, finitism, predicativism, and start with views that embrace
non-pluralism regarding ZFC.

Let the broad multiverse (based on ZFC) be the collection of all models
of ZFC. The broad multiverse conception of truth (based on ZFC) is then
simply the view that a statement of set theory is true simpliciter if it is
provable in ZFC. On this view the statement Con(ZFC) and other unde-
cided Π0

1-statements are classified as indeterminate. This view thus faces a
difficulty parallel to the one mentioned above concerning radical pluralism.

This motivates the shift to views that narrow the class of universes in
the multiverse by employing a strong logic. For example, one can restrict
to universes that are ω-models, β-models (i.e. wellfounded), etc. On the
view where one takes ω-models, the statement Con(ZFC) is classified as true

21



(though this is sensitive to the background theory) but the statement PM
(all projective sets are Lebesgue measurable) is classified as indeterminate.

For those who are convinced by the arguments (surveyed in the entry
“Large Cardinals and Determinacy”) for large cardinal axioms and axioms
of definable determinacy, even these multiverse conceptions are too weak. We
will follow this route. For the rest of this entry we will embrace non-pluralism
concerning large cardinal axioms and axioms of definable determinacy and
focus on the question of CH.

4.2 The Generic Multiverse

The motivation behind the generic multiverse is to grant the case for large
cardinal axioms and definable determinacy but deny that statements such as
CH have a determinate truth value. To be specific about the background the-
ory let us take ZFC+“There is a proper class of Woodin cardinals” and recall
that this large cardinal assumption secures axioms of definable determinacy
such as PD and ADL(R).

Let the generic multiverse V be the result of closing V under generic
extensions and generic refinements. One way to formalize this is by taking
an external vantage point and start with a countable transitive model M .
The generic multiverse based on M is then the smallest set VM such that
M ∈ VM and, for each pair of countable transitive models (N,N [G]) such
that N |= ZFC and G ⊆ P is N -generic for some partial order in P ∈ N , if
either N or N [G] is in VM then both N and N [G] are in VM .

Let the generic multiverse conception of truth be the view that a state-
ment is true simpliciter iff it is true in all universes of the generic multiverse.
We will call such a statement a generic multiverse truth. A statement is said
to be indeterminate according to the generic multiverse conception iff it is
neither true nor false according to the generic multiverse conception. For
example, granting our large cardinal assumptions, such a view deems PM
(and PD and ADL(R)) true but deems CH indeterminate.

4.3 The Ω Conjecture and the Generic Multiverse

Is the generic multiverse conception of truth tenable? The answer to this
question is closely related to the subject of Ω-logic. The basic connection
between generic multiverse truth and Ω-logic is embodied in the following
theorem:
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Theorem 4.1 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Then, for each Π2-statement ϕ the following are equiva-
lent :

(1) ϕ is a generic multiverse truth.

(2) ϕ is Ω-valid.

Now, recall that by Theorem 3.5, under our background assumptions, Ω-
validity is generically invariant. It follows that given our background theory,
the notion of generic multiverse truth is robust with respect to Π2-statements.
In particular, for Π2-statements, the statement “ϕ is indeterminate” is itself
determinate according to the generic multiverse conception. In this sense
the conception of truth is not “self-undermining” and one is not sent in a
downward spiral where one has to countenance multiverses of multiverses.
So it passes the first test. Whether it passes a more challenging test depends
on the Ω Conjecture.

The Ω Conjecture has profound consequences for the generic multiverse
conception of truth. Let

VΩ = {ϕ | ∅ |=Ω ϕ}

and, for any specifiable cardinal κ, let

VΩ(H(κ+)) = {ϕ | ZFC |=Ω “H(κ+) |= ϕ”},

where recall that H(κ+) is the collection of sets of hereditary cardinality less
than κ+. Thus, assuming ZFC and that there is a proper class of Woodin
cardinals, the set VΩ is Turing equivalent to the set of Π2 generic multiverse
truths and the set VΩ(H(κ+)) is precisely the set of generic multiverse truths
of H(κ+).

To describe the bearing of the Ω Conjecture on the generic-multiverse
conception of truth, we introduce two Transcendence Principles which serve
as constraints on any tenable conception of truth in set theory—a truth con-
straint and a definability constraint.

Definition 4.2 (Truth Constraint). Any tenable multiverse conception of
truth in set theory must be such that the Π2-truths (according to that con-
ception) in the universe of sets are not recursive in the truths about H(κ)
(according to that conception), for any specifiable cardinal.
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This constraint is in the spirit of those principles of set theory—most notably,
reflection principles—which aim to capture the pretheoretic idea that the
universe of sets is so rich that it cannot “be described from below”; more
precisely, it asserts that any tenable conception of truth must respect the idea
that the universe of sets is so rich that truth (or even just Π2-truth) cannot
be described in some specifiable fragment. (Notice that by Tarski’s theorem
on the undefinability of truth, the truth constraint is trivially satisfied by
the standard conception of truth in set theory which takes the multiverse to
contain a single element, namely, V .)

There is also a related constraint concerning the definability of truth. For
a specifiable cardinal κ, set Y ⊆ ω is definable in H(κ+) across the multiverse
if Y is definable in the structure H(κ+) of each universe of the multiverse
(possibly by formulas which depend on the parent universe).

Definition 4.3 (Definability Constraint). Any tenable multiverse conception
of truth in set theory must be such that the Π2-truths (according to that
conception) in the universe of sets are definable in H(κ) across the multiverse
universe, for any specifiable cardinal κ.

Notice again that by Tarski’s theorem on the undefinability of truth, the de-
finability constraint is trivially satisfied by the degenerate multiverse concep-
tion that takes the multiverse to contain the single element V . (Notice also
that if one modifies the definability constraint by adding the requirement that
the definition be uniform across the multiverse, then the constraint would
automatically be met.)

The bearing of the Ω Conjecture on the tenability of the generic-
multiverse conception of truth is contained in the following two theorems:

Theorem 4.4 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that the Ω Conjecture holds. Then VΩ is recursive
in VΩ(H(δ+0 )), where δ0 is the least Woodin cardinal.

Theorem 4.5 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that the Ω Conjecture holds. Then VΩ is definable
in H(δ+0 ), where δ0 is the least Woodin cardinal.

In other words, if there is a proper class of Woodin cardinals and if the Ω
Conjecture holds then the generic multiverse conception of truth violates
both the Truth Constraint (at δ0) and the Definability Constraint (at δ0).

There are actually sharper versions of the above results that involveH(c+)
in place of H(δ+0 ).
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Theorem 4.6 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that the Ω Conjecture holds. Then VΩ is recursive
in VΩ(H(c+)).

Theorem 4.7 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that the Ω Conjecture holds and that the AD+

Conjecture holds. Then VΩ is definable in H(c+).

In other words, if there is a proper class of Woodin cardinals and if the Ω
Conjecture holds then the generic-multiverse conception of truth violates the
Truth Constraint at the level of third-order arithmetic, and if, in addition,
the AD+ Conjecture holds, then the generic-multiverse conception of truth
violates the Definability Constraint at the level of third-order arithmetic.

4.4 Is There a Way Out?

There appear to be four ways that the advocate of the generic multiverse
might resist the above criticism.

First, one could maintain that the Ω Conjecture is just as problematic as
CH and hence like CH it is to be regarded as indeterminate according to the
generic-multiverse conception of truth. The difficulty with this approach is
the following:

Theorem 4.8 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Then, for any complete Boolean algebra B,

V |= Ω-conjecture iff V B |= Ω-conjecture.

Thus, in contrast to CH, the Ω Conjecture cannot be shown to be indepen-
dent of ZFC+ “There is a proper class of Woodin cardinals” via set forcing.
In terms of the generic multiverse conception of truth, we can put the point
this way: While the generic-multiverse conception of truth deems CH to be
indeterminate, it does not deem the Ω Conjecture to be indeterminate. So
the above response is not available to the advocate of the generic-multiverse
conception of truth. The advocate of that conception already deems the Ω
Conjecture to be determinate.

Second, one could grant that the Ω Conjecture is determinate but main-
tain that it is false. There are ways in which one might do this but that
does not undercut the above argument. The reason is the following: To be-
gin with there is a closely related Σ2-statement that one can substitute for
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the Ω Conjecture in the above arguments. This is the statement that the
Ω Conjecture is (non-trivially) Ω-satisfiable, that is, the statement: There
exists an ordinal α and a universe V ′ of the multiverse such that

V ′
α |= ZFC+ “There is a proper class of Woodin cardinals”

and
V ′
α |= “The Ω Conjecture”.

This Σ2-statement is invariant under set forcing and hence is one adherents
to the generic multiverse view of truth must deem determinate. Moreover,
the key arguments above go through with this Σ2-statement instead of the
Ω Conjecture. The person taking this second line of response would thus
also have to maintain that this statement is false. But there is substantial
evidence that this statement is true. The reason is that there is no known
example of a Σ2-statement that is invariant under set forcing relative to large
cardinal axioms and which cannot be settled by large cardinal axioms. (Such
a statement would be a candidate for an absolutely undecidable statement.)
So it is reasonable to expect that this statement is resolved by large cardi-
nal axioms. However, recent advances in inner model theory—in particular,
those in Woodin (2011b)—provide evidence that no large cardinal axiom can
refute this statement. Putting everything together: It is very likely that this
statement is in fact true; so this line of response is not promising.

Third, one could reject either the Truth Constraint or the Definability
Constraint. The trouble is that if one rejects the Truth Constraint then on
this view (assuming the Ω Conjecture) Π2 truth in set theory is reducible in
the sense of Turing reducibility to truth in H(δ0) (or, assuming the Strong
Ω Conjecture, H(c+)). And if one rejects the Definability Constraint then
on this view (assuming the Ω Conjecture) Π2 truth in set theory is reducible
in the sense of definability to truth in H(δ0) (or, assuming the Strong Ω
Conjecture, H(c+)). On either view, the reduction is in tension with the
acceptance of non-pluralism regarding the background theory ZFC+“There
is a proper class of Woodin cardinals”.

Fourth, one could embrace the criticism, reject the generic multiverse con-
ception of truth, and admit that there are some statements about H(δ+0 ) (or
H(c+), granting, in addition, the AD+ Conjecture) that are true simpliciter
but not true in the sense of the generic-multiverse, and yet nevertheless con-
tinue to maintain that CH is indeterminate. The difficulty is that any such
sentence ϕ is qualitatively just like CH in that it can be forced to hold and
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forced to fail. The challenge for the advocate of this approach is to modify
the generic-multiverse conception of truth in such a way that it counts ϕ as
determinate and yet counts CH as indeterminate.

In summary: There is evidence that the only way out is the fourth way
out and this places the burden back on the pluralist—the pluralist must come
up with a modified version of the generic multiverse.

Further Reading : For more on the connection between Ω-logic and the generic
multiverse and the above criticism of the generic multiverse see Woodin
(2011a). For the bearing of recent results in inner model theory on the
status of the Ω Conjecture see Woodin (2011b).

5 The Local Case Revisited

Let us now turn to a second way in which one might resist the local case for
the failure of CH. This involves a parallel case for CH. In Section 5.1 we will
review the main features of the case for ¬CH in order to compare it with the
parallel case for CH. In Section 5.2 we will present the parallel case for CH.
In Section 5.3 we will assess the comparison.

5.1 The Case for ¬CH

Recall that there are two basic steps in the case presented in Section 3.3.
The first step involves Ω-completeness (and this gives ¬CH) and the second
step involves maximality (and this gives the stronger 2ℵ0 = ℵ2). For ease of
comparison we shall repeat these features here:

The first step is based on the following result:

Theorem 5.1 (Woodin). Assume that there is a proper class of Woodin
cardinals and that the Strong Ω Conjecture holds.

(1) There is an axiom A such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the structure H(ω2).

(2) Any such axiom A has the feature that

ZFC + A |=Ω “H(ω2) |= ¬CH”.
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Let us rephrase this as follows: For each A satisfying (1), let

TA = {ϕ | ZFC + A |=Ω “H(ω2) |= ¬ϕ ”}.

The theorem says that if there is a proper class of Woodin cardinals and the
Strong Ω Conjecture holds, then there are (non-trivial) Ω-complete theories
TA of H(ω2) and all such theories contain ¬CH. In other words, under these
assumptions, there is a “good” theory and all “good” theories imply ¬CH.

The second step begins with the question of whether there is greater
agreement among the Ω-complete theories TA. Ideally, there would be just
one. However, this is not the case.

Theorem 5.2 (Koellner and Woodin). Assume that there is a proper class
of Woodin cardinals. Suppose that A is an axiom such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the structure H(ω2).

Then there is an axiom B such that

(i′) ZFC +B is Ω-satisfiable and

(ii′) ZFC +B is Ω-complete for the structure H(ω2)

and TA 6= TB.

This raises the issue as to how one is to select from among these theories?
It turns out that there is a maximal theory among the TA and this is given
by the axiom (∗).

Theorem 5.3 (Woodin). Assume ZFC and that there is a proper class of
Woodin cardinals. Then the following are equivalent :

(1) (∗).

(2) For each Π2-sentence ϕ in the language for the structure

〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉

if
ZFC + “〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉 |= ϕ”

is Ω-consistent, then

〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉 |= ϕ.
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So, of the various theories TA involved in Theorem 5.1, there is one that
stands out: The theory T(∗) given by (∗). This theory maximizes the Π2-
theory of the structure 〈H(ω2),∈, INS, A | A ∈ P(R) ∩ L(R)〉. The funda-
mental result is that in this maximal theory

2ℵ0 = ℵ2.

5.2 The Parallel Case for CH

The parallel case for CH also has two steps, the first involving Ω-completeness
and the second involving maximality.

The first result in the first step is the following:

Theorem 5.4 (Woodin, 1985). Assume ZFC and that there is a proper class
of measurable Woodin cardinals. Then ZFC + CH is Ω-complete for Σ2

1.

Moreover, up to Ω-equivalence, CH is the unique Σ2
1-statement that is Ω-

complete for Σ2
1; that is, letting TA be the Ω-complete theory given by ZFC+

A where A is Σ2
1, all such TA are Ω-equivalent to TCH and hence (trivially)

all such TA contain CH. In other words, there is a “good” theory and all
“good” theories imply CH.

To complete the first step we have to determine whether this result is
robust. For it could be the case that when one considers the next level,
Σ2

2 (or further levels, like third-order arithmetic) CH is no longer part of
the picture, that is, perhaps large cardinals imply that there is an axiom A

such that ZFC+A is Ω-complete for Σ2
2 (or, going further, all of third order

arithmetic) and yet not all such A have an associated TA which contains CH.
We must rule this out if we are to secure the first step.

The most optimistic scenario along these lines is this: The scenario is
that there is a large cardinal axiom L and axioms ~A such that ZFC + L +
~A is Ω-complete for all of third-order arithmetic and all such theories are
Ω-equivalent and imply CH. Going further, perhaps for each specifiable
fragment Vλ of the universe of sets there is a large cardinal axiom L and
axioms ~A such that ZFC + L + ~A is Ω-complete for the entire theory of Vλ

and, moreover, that such theories are Ω-equivalent and imply CH. Were
this to be the case it would mean that for each such λ there is a unique Ω-
complete picture of Vλ and we would have a unique Ω-complete understanding
of arbitrarily large fragments of the universe of sets. This would make for a
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strong case for new axioms completing the axioms of ZFC and large cardinal
axioms.

Unfortunately, this optimistic scenario fails: Assuming the existence of
one such theory one can construct another which differs on CH:

Theorem 5.5 (Koellner and Woodin). Assume ZFC and that there is a
proper class of Woodin cardinals. Suppose Vλ is a specifiable fragment of the
universe (that is sufficiently large) and suppose that there is a large cardinal

axiom L and axioms ~A such that

ZFC + L+ ~A is Ω-complete for Th(Vλ).

Then there are axioms ~B such that

ZFC + L+ ~B is Ω-complete for Th(Vλ)

and the first theory Ω-implies CH if and only if the second theory Ω-implies
¬CH.

This still leaves us with the question of existence and the answer to this
question is sensitive to the Ω Conjecture and the AD+ Conjecture:

Theorem 5.6 (Woodin). Assume that there is a proper class of Woodin
cardinals and that the Ω Conjecture holds. Then there is no recursive theory
~A such that ZFC + ~A is Ω-complete for the theory of Vδ0+1, where δ0 is the
least Woodin cardinal.

In fact, under a stronger assumption, the scenario must fail at a much earlier
level.

Theorem 5.7 (Woodin). Assume that there is a proper class of Woodin
cardinals and that the Ω Conjecture holds. Assume that the AD+ Conjecture
holds. Then there is no recursive theory ~A such that ZFC+ ~A is Ω-complete
for the theory of Σ2

3.

It is open whether there can be such a theory at the level of Σ2
2. It is

conjectured that ZFC + ♦ is Ω-complete (assuming large cardinal axioms)
for Σ2

2.
Let us assume that it is answered positively and return to the question

of uniqueness. For each such axiom A, let TA be the Σ2
2 theory computed by

ZFC + A in Ω-logic. The question of uniqueness simply asks whether TA is
unique.
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Theorem 5.8 (Koellner and Woodin). Assume that there is a proper class
of Woodin cardinals. Suppose that A is an axiom such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for Σ2
2.

Then there is an axiom B such that

(i′) ZFC +B is Ω-satisfiable and

(ii′) ZFC +B is Ω-complete for Σ2
2

and TA 6= TB.

This is the parallel of Theorem 5.2.
To complete the parallel one would need that CH is among all of the TA.

This is not known. But it is a reasonable conjecture.

Conjecture 5.9. Assume large cardinal axioms.

(1) There is an Σ2
2 axiom A such that

(i) ZFC + A is Ω-satisfiable and

(ii) ZFC + A is Ω-complete for the Σ2
2.

(2) Any such Σ2
2 axiom A has the feature that

ZFC + A |=Ω CH.

Should this conjecture hold it would provide a true analogue of Theorem 5.1.
This would complete the parallel with the first step.

There is also a parallel with the second step. Recall that for the second
step in the previous subsection we had that although the various TA did not
agree, they all contained ¬CH and, moreover, from among them there is one
that stands out, namely the theory given by (∗), since this theory maximizes
the Π2-theory of the structure 〈H(ω2),∈, INS, A | A ∈ P(R)∩L(R)〉. In the
present context of CH we again (assuming the conjecture) have that although
the TA do not agree, they all contain CH. It turns out that once again, from
among them there is one that stands out, namely, the maximum one. For
it is known (by a result of Woodin in 1985) that if there is a proper class
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of measurable Woodin cardinals then there is a forcing extension satisfying
all Σ2

2 sentences ϕ such that ZFC + CH + ϕ is Ω-satisfiable. (See Larson,
Ketchersid & Zapletal (2008).) It follows that if the question of existence
is answered positively with an A that is Σ2

2 then TA must be this maximum
Σ2

2 theory and, consequently, all TA agree when A is Σ2
2. So, assuming that

there is a TA where A is Σ2
2, then, although not all TA agree (when A is

arbitrary) there is one that stands out, namely, the one that is maximum for
Σ2

2 sentences.
Thus, if the above conjecture holds, then the case of CH parallels that

of ¬CH, only now Σ2
2 takes the place of the theory of H(ω2).

5.3 Assessment

Assuming that the conjecture holds the case of CH parallels that of ¬CH,
only now Σ2

2 takes the place of the theory of H(ω2): Under the background
assumptions we have:

(1) (a) there are A such that ZFC + A is Ω-complete for H(ω2)

(b) for every such A the associated TA contains ¬CH, and

(c) there is a TA which is maximal, namely, T(∗) and this theory con-
tains 2ℵ0 = ℵ2.

(2) (a) there are Σ2
2-axioms A such that ZFC + A is Ω-complete for Σ2

2

(b) for every such A the associated TA contains CH, and

(c) there is a TA which is maximal.

The two situations are parallel with regard to maximality but in terms
of the level of Ω-completeness the first is stronger. For in the first case we
are not just getting Ω-completeness with regard to the Π2 theory of H(ω2)
(with the additional predicates), rather we are getting Ω-completeness with
regard to all of H(ω2). This is arguably an argument in favour of the case
for ¬CH, even granting the conjecture.

But there is a stronger point. There is evidence coming from inner model
theory (which we shall discuss in the next section) to the effect that the
conjecture is in fact false. Should this turn out to be the case it would break
the parallel, strengthening the case for ¬CH.

However, one might counter this as follows: The higher degree of Ω-
completeness in the case for ¬CH is really illusory since it is an artifact of

32



the fact that under (∗) the theory of H(ω2) is in fact mutually interpretable
with that of H(ω1) (by a deep result of Woodin). Moreover, this latter fact
is in conflict with the spirit of the Transcendence Principles discussed in
Section 4.3. Those principles were invoked in an argument to the effect that
CH does not have an answer. Thus, when all the dust settles the real import
of Woodin’s work on CH (so the argument goes) is not that CH is false but
rather that CH very likely has an answer.

It seems fair to say that at this stage the status of the local approaches
to resolving CH is somewhat unsettled. For this reason, in the remainder of
this entry we shall focus on global approaches to settling CH. We shall very
briefly discuss two such approaches—the approach via inner model theory
and the approach via quasi-large cardinal axioms.

6 The Ultimate Inner Model

Inner model theory aims to produce “L-like” models that contain large cardi-
nal axioms. For each large cardinal axiom Φ that has been reached by inner
model theory, one has an axiom of the form V=LΦ. This axiom has the
virtue that (just as in the simplest case of V=L) it provides an “effectively
complete” solution regarding questions about LΦ (which, by assumption, is
V ). Unfortunately, it turns out that the axiom V=LΦ is incompatible with
stronger large cardinal axioms Φ′. For this reason, axioms of this form have
never been considered as plausible candidates for new axioms.

But recent developments in inner model theory (due to Woodin) show
that everything changes at the level of a supercompact cardinal. These de-
velopments show that if there is an inner model N which “inherits” a super-
compact cardinal from V (in the manner in which one would expect, given
the trajectory of inner model theory), then there are two remarkable conse-
quences: First, N is close to V (in, for example, the sense that for sufficiently
large singular cardinals λ, N correctly computes λ+). Second, N inherits all
known large cardinals that exist in V . Thus, in contrast to the inner models
that have been developed thus far, an inner model at the level of a supercom-
pact would provide one with an axiom that could not be refuted by stronger
large cardinal assumptions.

The issue, of course, is whether one can have an “L-like” model (one
that yields an “effectively complete” axiom) at this level. There is reason
to believe that one can. There is now a candidate model LΩ that yields
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an axiom V=LΩ with the following features: First, V=LΩ is “effectively
complete.” Second, V=LΩ is compatible with all large cardinal axioms.
Thus, on this scenario, the ultimate theory would be the (open-ended) the-
ory ZFC+V=LΩ+LCA, where LCA is a schema standing for “large cardinal
axioms.” The large cardinal axioms will catch instances of Gödelian inde-
pendence and the axiom V=LΩ will capture the remaining instances of inde-
pendence. This theory would imply CH and settle the remaining undecided
statements. Independence would cease to be an issue.

It turns out, however, that there are other candidate axioms that share
these features, and so the spectre of pluralism reappears. For example, there
are axioms V=LΩ

S and V=LΩ
(∗). These axioms would also be “effectively

complete” and compatible with all large cardinal axioms. Yet they would
resolve various questions differently than the axiom V=LΩ. For example,
the axiom, V=LΩ

(∗) would imply ¬CH. How, then, is one to adjudicate
between them?

Further Reading : For an introduction to inner model theory see Mitchell
(2010) and Steel (2010). For more on the recent developments at the level of
one supercompact and beyond see Woodin (2011b).

7 The Structure Theory of L(Vλ+1)

This brings us to the second global approach, one that promises to select the
correct axiom from among V=LΩ, V=LΩ

S , V=LΩ
(∗), and their variants. This

approach is based on the remarkable analogy between the structure theory
of L(R) under the assumption of ADL(R) and the structure theory of L(Vλ+1)
under the assumption that there is an elementary embedding from L(Vλ+1)
into itself with critical point below λ. This embedding assumption is the
strongest large cardinal axiom that appears in the literature.

The analogy between L(R) and L(Vλ+1) is based on the observation that
L(R) is simply L(Vω+1). Thus, λ is the analogue of ω, λ+ is the analogue
of ω1, and so on. As an example of the parallel between the structure the-
ory of L(R) under ADL(R) and the structure theory of L(Vλ+1) under the
embedding axiom, let us mention that in the first case, ω1 is a measurable
cardinal in L(R) and, in the second case, the analogue of ω1—namely, λ+—is
a measurable cardinal in L(Vλ+1). This result is due to Woodin and is just
one instance from among many examples of the parallel that are contained
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in his work.
Now, we have a great deal of information about the structure theory of

L(R) under ADL(R). Indeed, as we noted above, this axiom is “effectively
complete” with regard to questions about L(R). In contrast, the embedding
axiom on its own is not sufficient to imply that L(Vλ+1) has a structure the-
ory that fully parallels that of L(R) under ADL(R). However, the existence of
an already rich parallel is evidence that the parallel extends, and we can sup-
plement the embedding axiom by adding some key components. When one
does so, something remarkable happens: the supplementary axioms become
forcing fragile. This means that they have the potential to erase indepen-
dence and provide non-trivial information about Vλ+1. For example, these
supplementary axioms might settle CH and much more.

The difficulty in investigating the possibilities for the structure theory of
L(Vλ+1) is that we have not had the proper lenses through which to view it.
The trouble is that the model L(Vλ+1) contains a large piece of the universe—
namely, L(Vλ+1)—and the theory of this structure is radically underdeter-
mined. The results discussed above provide us with the proper lenses. For
one can examine the structure theory of L(Vλ+1) in the context of ultimate
inner models like LΩ, LΩ

S , L
Ω
(∗), and their variants. The point is that these

models can accommodate the embedding axiom and, within each, one will
be able to compute the structure theory of L(Vλ+1).

This provides a means to select the correct axiom from among V=LΩ,
V=LΩ

S , V=LΩ
(∗), and their variants. One simply looks at the L(Vλ+1) of

each model (where the embedding axiom holds) and checks to see which has
the true analogue of the structure theory of L(R) under the assumption of
ADL(R). It is already known that certain pieces of the structure theory cannot
hold in LΩ. But it is open whether they can hold in LΩ

S .
Let us consider one such (very optimistic) scenario: The true analogue

of the structure theory of L(R) under ADL(R) holds of the L(Vλ+1) of LΩ
S

but not of any of its variants. Moreover, this structure theory is “effectively
complete” for the theory of Vλ+1. Assuming that there is a proper class
of λ where the embedding axiom holds, this gives an “effectively complete”
theory of V . And, remarkably, part of that theory is that V must be LΩ

S .
This (admittedly very optimistic) scenario would constitute a very strong
case for axioms that resolve all of the undecided statements.

One should not place too much weight on this particular scenario. It is
just one of many. The point is that we are now in a position to write down a
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list of definite questions with the following features: First, the questions on
this list will have answers—independence is not an issue. Second, if the an-
swers converge then one will have strong evidence for new axioms settling the
undecided statements (and hence non-pluralism about the universe of sets);
while if the answers oscillate, one will have evidence that these statements are
“absolutely undecidable” and this will strengthen the case for pluralism. In
this way the questions of “absolute undecidability” and pluralism are given
mathematical traction.

Further Reading : For more on the structure theory of L(Vλ+1) and the par-
allel with determinacy see Woodin (Forthcoming).
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